Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 17(1): e14408, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38226780

RESUMO

Mobile genetic elements (MGEs) are crucial for horizontal gene transfer (HGT) in bacteria and facilitate their rapid evolution and adaptation. MGEs include plasmids, integrative and conjugative elements, transposons, insertion sequences and bacteriophages. Notably, the spread of antimicrobial resistance genes (ARGs), which poses a serious threat to public health, is primarily attributable to HGT through MGEs. This mini-review aims to provide an overview of the mechanisms by which MGEs mediate HGT in microbes. Specifically, the behaviour of conjugative plasmids in different environments and conditions was discussed, and recent methodologies for tracing the dynamics of MGEs were summarised. A comprehensive understanding of the mechanisms underlying HGT and the role of MGEs in bacterial evolution and adaptation is important to develop strategies to combat the spread of ARGs.


Assuntos
Bacteriófagos , Sequências Repetitivas Dispersas , Transferência Genética Horizontal , Plasmídeos/genética , Bactérias/genética , Bacteriófagos/genética , Antibacterianos
2.
Microb Genom ; 9(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37341708

RESUMO

Nucleotide sequence similarity, including k-mer plasmid composition, has been used for prediction of plasmid evolutionary host range, representing the hosts in which a plasmid has replicated at some point during its evolutionary history. However, the relationships between the bacterial taxa of experimentally identified transconjugants and the predicted evolutionary host ranges are poorly understood. Here, four different PromA group plasmids showing different k-mer compositions were used as model plasmids. Filter mating assays were performed with a donor harbouring plasmids and recipients of bacterial communities extracted from environmental samples. A broad range of transconjugants was obtained with different bacterial taxa. A calculation of the dissimilarities in k-mer compositions as Mahalanobis distance between the plasmid and its sequenced transconjugant chromosomes revealed that each plasmid and transconjugant were significantly more similar than the plasmid and other non-transconjugant chromosomes. These results indicate that plasmids with different k-mer compositions clearly have different host ranges to which the plasmid will be transferred and replicated. The similarity of the nucleotide compositions could be used for predicting not only the plasmid evolutionary host range but also future host ranges.


Assuntos
Conjugação Genética , Microbiota , Conjugação Genética/genética , Plasmídeos/genética , Bactérias/genética , Cromossomos
3.
Appl Environ Microbiol ; 88(18): e0111422, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36069618

RESUMO

Various conjugative plasmids were obtained by exogenous plasmid capture, biparental mating, and/or triparental mating methods from different environmental samples in Japan. Based on phylogenetic analyses of their whole-nucleotide sequences, new IncP/P-1 plasmids that could be classified into novel subgroups were obtained. Mini-replicons of the plasmids were constructed, and each of them was incompatible with at least one of the IncP/P-1 plasmids, although they showed diverse iteron sequences in their oriV regions. There were two large clades of IncP/P-1 plasmids, clade I and II. Plasmids in clade I and II included antibiotic resistance genes. Notably, nucleotide compositions of newly found plasmids exhibited different tendencies compared with those of the previously well-studied IncP/P-1 plasmids. Indeed, the host range of plasmids of clade II was different from that of clade I. Although few PromA plasmids have been reported, the number of plasmids belonging to PromAß, and -γ subgroups detected in this study was close to that of IncP/P-1 plasmids. The host ranges of PromAγ and PromAδ plasmids were broad and transferred to different and distinct classes of Proteobacteria. Interestingly, PromA plasmids and many IncP/P-1 plasmids do not carry any accessory genes. These findings indicate the presence of "hitherto-unnoticed" conjugative plasmids, including IncP/P-1 or PromA derivative ones in nature. These plasmids would have important roles in the exchange of various genes, including antibiotic resistance genes, among different bacteria in nature. IMPORTANCE Plasmids are known to spread among different bacteria. However, which plasmids spread among environmental samples and in which environments they are present is still poorly understood. This study showed that unidentified conjugative plasmids were present in various environments. Different novel IncP/P-1 plasmids were found, whose host ranges were different from those of known plasmids, showing wide diversity of IncP/P-1 plasmids. PromA plasmids, exhibiting a broad host range, were diversified into several subgroups and widely distributed in varied environments. These findings are important for understanding how bacteria naturally exchange their genes, including antibiotic resistance genes, a growing threat to human health worldwide.


Assuntos
Antibacterianos , Bactérias , Bactérias/genética , Humanos , Japão , Nucleotídeos , Filogenia , Plasmídeos/genética
4.
Biosci Biotechnol Biochem ; 85(4): 1005-1015, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33580688

RESUMO

The frequency of transconjugants were compared for the incompatibility (Inc) P-1 and P-7 plasmids pBP136 and pCAR1 under aerobic and anaerobic conditions. Filter mating assays were performed with one donor strain and one recipient strain using different donors of Pseudomonas and recipient strains, including Pseudomonas, Pantoea, and Buttiauxella. Under anaerobic condition, frequencies of transconjugants for both plasmids were 101-103-fold lower than those under aerobic condition regardless of whether aerobically or anaerobically grown donors and recipients were used. To compare the transconjugant ranges under aerobic and anaerobic conditions, conjugation was performed between the donor of pBP136 and recipient bacteria extracted from environmental samples. Several transconjugants were uniquely obtained from each aerobic or anaerobic condition. Our findings indicate that a plasmid can differently spread among bacteria depending on the oxygen concentrations of the environment.


Assuntos
Oxigênio/metabolismo , Plasmídeos , Pseudomonas/metabolismo
5.
Front Microbiol ; 11: 1187, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582111

RESUMO

Plasmids are extrachromosomal DNA that can be horizontally transferred between different bacterial cells by conjugation. Horizontal gene transfer of plasmids can promote rapid evolution and adaptation of bacteria by imparting various traits involved in antibiotic resistance, virulence, and metabolism to their hosts. The host range of plasmids is an important feature for understanding how they spread in environmental microbial communities. Earlier bioinformatics studies have demonstrated that plasmids are likely to have similar oligonucleotide (k-mer) compositions to their host chromosomes and that evolutionary host ranges of plasmids could be predicted from this similarity. However, there are no complementary studies to assess the consistency between the predicted evolutionary host range and experimentally determined replication/transfer host range of a plasmid. In the present study, the replication/transfer host range of a model plasmid, pSN1216-29, exogenously isolated from cow manure as a newly discovered self-transmissible plasmid, was experimentally determined within microbial communities extracted from soil and cow manure. In silico prediction of evolutionary host range was performed with the pSN1216-29 using its oligonucleotide compositions independently. The results showed that oligonucleotide compositions of the plasmid pSN1216-29 had more similarities to those of hosts (transconjugants genera) than those of non-hosts (other genera). These findings can contribute to the understanding of how plasmids behave in microbial communities, and aid in the designing of appropriate plasmid vectors for different bacteria.

6.
Front Microbiol ; 9: 2602, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459733

RESUMO

Novel self-transmissible plasmids were exogenously captured from environmental samples by triparental matings with pBBR1MCS-2 as a mobilizable plasmid and Pseudomonas resinovorans as a recipient. A total of 272 recipients were successfully obtained as plasmid host candidates from granules of an anaerobic methane fermentation plant and from cow manure. The whole nucleotide sequences of six plasmids were determined, including one IncP-1 plasmid (pSN1104-59), four PromA-like plasmids (pSN1104-11, pSN1104-34, pSN0729-62, and pSN0729-70), and one novel plasmid (pSN1216-29), whose incompatibility group has not been previously identified. No previously known antibiotic resistance genes were found in these plasmids. In-depth phylogenetic analyses showed that the PromA-like plasmids belong to subgroups of PromA (designated as PromAγ and PromAδ) different from previously proposed subgroups PromAα and PromAß. Twenty-four genes were identified as backbone genes by comparisons with other PromA plasmids. The nucleotide sequences of pSN1216-29 share high identity with those found in clinical isolates. A minireplicon of pSN1216-29 was successfully constructed from repA encoding a replication initiation protein and oriV. All the captured plasmids were found to have a broad host range and could be transferred to and replicated in different classes of Proteobacteria. Notably, repA and oriV of pSN1216-29 showed high similarity with one of two replication systems of pSRC119-A/C, known as a plasmid with multidrug resistance genes found in Salmonella enterica serovar Senftenberg. Our findings suggest that these "cryptic" but broad-host-range plasmids may be important for spreading several genes as "vehicles" in a wider range of bacteria in natural environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...